Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

نویسندگان

  • P. Balasubramaniam Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram - 624 302, Tamilnadu, India
  • R. Chandran Department of Computer Science, Government Arts College, Melur, Madurai - 625 106, Tamilnadu, India
  • R. Sathy Department of Social Sciences, Tamil Nadu Agricultural University, Coim- batore - 641 003, Tamilnadu, India
چکیده مقاله:

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matrices corresponding to different subintervals in the LKFs. A new delay-dependent stability condition is derived with Markovian jumping parameters by T-S fuzzy model. Based on the linear matrix inequality (LMI) technique, maximum admissible upper bound (MAUB) for the discrete and distributed delays are calculated by the LMI Toolbox in MATLAB. Numerical examples are given to illustrate the effectiveness of the proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

robust stability of fuzzy markov type cohen-grossberg neural networks by delay decomposition approach

in this paper, we investigate the delay-dependent robust stability of fuzzy cohen-grossberg neural networks with markovian jumping parameter and mixed time varying delays by delay decomposition method. a new lyapunov-krasovskii functional (lkf) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

Robust Stability of Fuzzy Markov Type Cohen-grossberg Neural Networks by Delay Decomposition Approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

LMI approach for global robust stability of Cohen-Grossberg neural networks with multiple delays

In this paper, we investigate the global robust stability of the equilibrium point of a class of Cohen–Grossberg neural networks with multiple delays and uncertainties. The new criteria for the global robust stability are given by way of constructing a suitable Lyapunov functional. The criteria take the form of linear matrix inequality (LMI), and are independent of the amplification function. C...

متن کامل

Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type

In this paper, existence and uniqueness of the solution of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument are discussed. Based on the comparison principle, it presents new theoretical results on the global robust exponential stability of interval fuzzy Cohen-Grossberg networks with piecewise constant argument. As a special case, the corresponding results of inte...

متن کامل

New Conditions on Global Stability of Cohen-Grossberg Neural Networks

In this letter, we discuss the dynamics of the Cohen-Grossberg neural networks. We provide a new and relaxed set of sufficient conditions for the Cohen-Grossberg networks to be absolutely stable and exponentially stable globally. We also provide an estimate of the rate of convergence.

متن کامل

Periodic Oscillation of Fuzzy Cohen-Grossberg Neural Networks with Distributed Delay and Variable Coefficients

A class of fuzzy Cohen-Grossberg neural networks with distributed delay and variable coefficients is discussed. It is neither employing coincidence degree theory nor constructing Lyapunov functionals, instead, by applying matrix theory and inequality analysis, some sufficient conditions are obtained to ensure the existence, uniqueness, global attractivity and global exponential stability of the...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 11  شماره 2

صفحات  1- 16

تاریخ انتشار 2014-04-25

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023